Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 488
Filtrar
1.
Front Physiol ; 15: 1362185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655032

RESUMO

Introduction: Atrial fibrillation (AF) is the most common cardiac arrhythmia, which is clinically identified with irregular and rapid heartbeat rhythm. AF puts a patient at risk of forming blood clots, which can eventually lead to heart failure, stroke, or even sudden death. Electrocardiography (ECG), which involves acquiring bioelectrical signals from the body surface to reflect heart activity, is a standard procedure for detecting AF. However, the occurrence of AF is often intermittent, costing a significant amount of time and effort from medical doctors to identify AF episodes. Moreover, human error is inevitable, as even experienced medical professionals can overlook or misinterpret subtle signs of AF. As such, it is of critical importance to develop an advanced analytical model that can automatically interpret ECG signals and provide decision support for AF diagnostics. Methods: In this paper, we propose an innovative deep-learning method for automated AF identification using single-lead ECGs. We first extract time-frequency features from ECG signals using continuous wavelet transform (CWT). Second, the convolutional neural networks enhanced with residual learning (ReNet) are employed as the functional approximator to interpret the time-frequency features extracted by CWT. Third, we propose to incorporate a multi-branching structure into the ResNet to address the issue of class imbalance, where normal ECGs significantly outnumber instances of AF in ECG datasets. Results and Discussion: We evaluate the proposed Multi-branching Resnet with CWT (CWT-MB-Resnet) with two ECG datasets, i.e., PhysioNet/CinC challenge 2017 and ECGs obtained from the University of Oklahoma Health Sciences Center (OUHSC). The proposed CWT-MB-Resnet demonstrates robust prediction performance, achieving an F1 score of 0.8865 for the PhysioNet dataset and 0.7369 for the OUHSC dataset. The experimental results signify the model's superior capability in balancing precision and recall, which is a desired attribute for ensuring reliable medical diagnoses.

2.
Ann Noninvasive Electrocardiol ; 29(3): e13114, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38563240

RESUMO

OBJECTIVE: To assess electrocardiogram (ECG) for risk stratification in inferior ST-elevation myocardial infarction (STEMI) patients within 24 h. METHODS: Three hundred thirty-four patients were divided into four ECG-based groups: Group A: R V1 <0.3 mV with ST-segment elevation (ST↑) V7-V9, Group B: R V1 <0.3 mV without ST↑ V7-V9, Group C: R V1 ≥0.3 mV with ST↑ V7-V9, and Group D: R V1 ≥0.3 mV without ST↑ V7-V9. RESULTS: Group A demonstrated the longest QRS duration, followed by Groups B, C, and D. ECG signs for right ventricle (RV) infarction were more common in Groups A and B (p < .01). ST elevation in V6, indicative of left ventricle (LV) lateral injury, was more higher in Group C than in Group A, while the ∑ST↑ V3R + V4R + V5R, representing RV infarction, showed the opposite trend (p < .05). The estimated LV infarct size from ECG was similar between Groups A and C, yet Group A had higher creatine kinase MB isoform (CK-MB; p < .05). Cardiac troponin I (cTNI) was higher in Groups A and C than in B and D (p < .05 and p = .16, respectively). NT-proBNP decreased across groups (p = .20), with the highest left ventricular ejection fraction (LVEF) observed in Group D (p < .05). Group A notably demonstrated more cardiac dysfunction within 4 h post-onset. CONCLUSIONS: For inferior STEMI patients, concurrent R V1 <0.3 mV with ST↑ V7-V9 suggests prolonged ventricular activation and notable myocardial damage. RV infarction's dominance over LV lateral injury might explain these observations.


Assuntos
Infarto Miocárdico de Parede Inferior , Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto Miocárdico de Parede Inferior/complicações , Infarto Miocárdico de Parede Inferior/diagnóstico , Eletrocardiografia , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Relevância Clínica , Volume Sistólico , Função Ventricular Esquerda , Arritmias Cardíacas
3.
J Med Case Rep ; 18(1): 207, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38610054

RESUMO

BACKGROUND: Total pelvic exenteration is the ultimate solution for rectovesicovaginal fistula caused by radiation therapy, yet total pelvic exenteration frequently causes intraoperative complications and postoperative complications. These complications are responsible for the dysfunction of lower extremities, impaired quality of life, and even the high long-term morbidity rate, thus multidisciplinary cooperation and early intervention for prevention of complications are necessary. Physical therapy was found to reduce the postoperative complications and promote rehabilitation, yet the effect on how physiotherapy prevents and treats complications after total pelvic exenteration and pelvic lymphadenectomy remains unclear. CASE PRESENTATION: A 50-year-old Chinese woman gradually developed perianal and pelvic floor pain and discomfort, right lower limb numbness, and involuntary vaginal discharge owing to recurrence and metastasis of cervical cancer more than half a year ago. Diagnosed as rectovesicovaginal fistula caused by radiation, she received total pelvic exenteration and subsequently developed severe lower limb edema, swelling pain, obturator nerve injury, and motor dysfunction. The patient was referred to a physiotherapist who performed rehabilitation evaluation and found edema in both lower extremities, right inguinal region pain (numeric pain rate scale 5/10), decreased temperature sensation and light touch in the medial thigh of the right lower limb, decreased right hip adductor muscle strength (manual muscle test 1/5) and right hip flexor muscle strength (manual muscle test 1/5), inability actively to adduct and flex the right hip with knee extension, low de Morton mobility Index score (0/100), and low Modified Barthel Index score (35/100). Routine physiotherapy was performed in 2 weeks, including therapeutic exercises, mechanical stimulation and electrical stimulation as well as manual therapy. The outcomes showed that physiotherapy significantly reduced lower limb pain and swelling, and improved hip range of motion, motor function, and activities of daily living, but still did not prevent thrombosis. CONCLUSION: Standardized physical therapy demonstrates the effect on postoperative complications after total pelvic exenteration and pelvic lymphadenectomy. This supports the necessity of multidisciplinary cooperation and early physiotherapy intervention. Further research is needed to determine the causes of thrombosis after standardized intervention, and more randomized controlled trials are needed to investigate the efficacy of physical therapy after total pelvic exenteration.


Assuntos
Exenteração Pélvica , Trombose , Neoplasias do Colo do Útero , Feminino , Humanos , Pessoa de Meia-Idade , Atividades Cotidianas , Qualidade de Vida , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/cirurgia , Extremidade Inferior , Modalidades de Fisioterapia , Dor Pélvica , Edema , Complicações Pós-Operatórias/terapia
4.
Hepatobiliary Surg Nutr ; 13(2): 198-213, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617471

RESUMO

Background: Adequate evaluation of degrees of liver cirrhosis is essential in surgical treatment of hepatocellular carcinoma (HCC) patients. The impact of the degrees of cirrhosis on prediction of post-hepatectomy liver failure (PHLF) remains poorly defined. This study aimed to construct and validate a combined pre- and intra-operative nomogram based on the degrees of cirrhosis in predicting PHLF in HCC patients using prospective multi-center's data. Methods: Consecutive HCC patients who underwent hepatectomy between May 18, 2019 and Dec 19, 2020 were enrolled at five tertiary hospitals. Preoperative cirrhotic severity scoring (CSS) and intra-operative direct liver stiffness measurement (DSM) were performed to correlate with the Laennec histopathological grading system. The performances of the pre-operative nomogram and combined pre- and intra-operative nomogram in predicting PHLF were compared with conventional predictive models of PHLF. Results: For 327 patients in this study, histopathological studies showed the rates of HCC patients with no, mild, moderate, and severe cirrhosis were 41.9%, 29.1%, 22.9%, and 6.1%, respectively. Either CSS or DSM was closely correlated with histopathological stages of cirrhosis. Thirty-three (10.1%) patients developed PHLF. The 30- and 90-day mortality rates were 0.9%. Multivariate regression analysis showed four pre-operative variables [HBV-DNA level, ICG-R15, prothrombin time (PT), and CSS], and one intra-operative variable (DSM) to be independent risk factors of PHLF. The pre-operative nomogram was constructed based on these four pre-operative variables together with total bilirubin. The combined pre- and intra-operative nomogram was constructed by adding the intra-operative DSM. The pre-operative nomogram was better than the conventional models in predicting PHLF. The prediction was further improved with the combined pre- and intra-operative nomogram. Conclusions: The combined pre- and intra-operative nomogram further improved prediction of PHLF when compared with the pre-operative nomogram. Trial Registration: Clinicaltrials.gov Identifier: NCT04076631.

5.
Epigenomics ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530068

RESUMO

R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.


R-loops are special structures inside our cells, made when a piece of RNA (a molecule similar to DNA) sticks to DNA, exposing a part of the DNA. These structures play important roles in how our cells work, helping to keep them healthy and functioning properly. However, when these R-loops do not form correctly or are not controlled well by the cell, they can cause problems. This is especially true in the brain, where mistakes in R-loop formation can lead to various neurological disorders, which are conditions that affect the brain and nerves. In our review, we examine how R-loops interact with certain types of DNA damage and how this can lead to brain disorders. We hope that by understanding these interactions better, scientists can find new ways to treat or prevent these conditions.

6.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496575

RESUMO

5-hydroxymethylcytosine (5hmC), a critical epigenetic mark with a significant role in regulating tissue-specific gene expression, is essential for understanding the dynamic functions of the human genome. Using tissue-specific 5hmC sequencing data, we introduce Deep5hmC, a multimodal deep learning framework that integrates both the DNA sequence and the histone modification information to predict genome-wide 5hmC modification. The multimodal design of Deep5hmC demonstrates remarkable improvement in predicting both qualitative and quantitative 5hmC modification compared to unimodal versions of Deep5hmC and state-of-the-art machine learning methods. This improvement is demonstrated through benchmarking on a comprehensive set of 5hmC sequencing data collected at four time points during forebrain organoid development and across 17 human tissues. Notably, Deep5hmC showcases its practical utility by accurately predicting gene expression and identifying differentially hydroxymethylated regions in a case-control study of Alzheimer's disease.

7.
Chem Commun (Camb) ; 60(25): 3445-3448, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38445390

RESUMO

Quinoline carboxylic acid-linked and Pd nanoparticle (NP)-loaded COF nanospheres were constructed via a three-component one-pot Doebner reaction and post-synthetic metalation. The obtained Pd@DhaTAPB-COOH solid stabilizer can greatly promote the pH-switched recyclable Pickering interfacial dechlorination reaction, which sheds light on the bright future of smart Pickering emulsion catalysis.

8.
Heliyon ; 10(6): e27646, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509951

RESUMO

Ageing is becoming an increasingly serious problem; therefore, there is an urgent need to find safe and effective anti-ageing drugs. Aims: To investigate the effects of Bazi Bushen capsule (BZBS) on the senescence of mesenchymal stem cells (MSCs) and explore its mechanism of action. Methods: Network pharmacology was used to predict the targets of BZBS in delaying senescence in MSCs. For in vitro studies, MSCs were treated with D-gal, BZBS, and NMN, and cell viability, cell senescence, stemness-related genes, and cell cycle were studied using cell counting kit-8 (CCK-8) assay, SA-ß-galactosidase (SA-ß-gal) staining, Quantitative Real-Time PCR (qPCR) and flow cytometry (FCM), respectively. Alkaline phosphatase (ALP), alizarin red, and oil red staining were used to determine the osteogenic and lipid differentiation abilities of MSCs. Finally, the expression of senescence-related genes and cyclin-related factors was detected by qPCR and western blotting. Results: Network pharmacological analysis suggested that BZBS delayed cell senescence by interfering in the cell cycle. Our in vitro studies suggested that BZBS could significantly increase cell viability (P < 0.01), decrease the quantity of ß-galactosidase+ cells (P < 0.01), downregulate p16 and p21 (P < 0.05, P < 0.01), improve adipogenic and osteogenic differentiation, and upregulate Nanog, OCT4 and SOX2 genes (P < 0.05, P < 0.01) in senescent MSCs. Moreover, BZBS significantly reduced the proportion of senescent MSCs in the G0/G1 phase (P < 0.01) and enhanced the expression of CDK4, Cyclin D1, and E2F1 (P < 0.05, P < 0.01, respectively). Upon treatment with HY-50767A, a CDK4 inhibitor, the upregulation of E2F1 was no longer observed in the BZBS group. Conclusions: BZBS can protect MSCs against D-gal-induced senescence, which may be associated with cell cycle regulation via the Cyclin D1/CDK4/E2F1 signalling pathway.

9.
J Sci Food Agric ; 104(7): 4097-4108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308444

RESUMO

BACKGROUND: In order to explore the effect of ozone sterilization treatment on tomato disease control and increase fruit setting rate, this study took 906 pink fruit tomato as test material, used a small ozone generator to carry out ozone treatment single-factor test, and then selected orthogonal table to guide the ozone treatment combination. The effects of different ozone treatment concentration, ozone treatment duration and ozone treatment times on the growth, disease and fruit setting rate of potted tomato were analyzed. RESULTS: Different ozone treatment had effects on leaf mildew, gray mold and fruit setting rate of tomato. The influence degree of three factors on leaf mildew, gray mold and fruit setting rate was from large to small, a > b > c, a > c > b, b > a > c. A quadratic regression model was established with the control effect of tomato leaf mildew, gray mold and fruit setting rate as response values, and the optimal parameter combination was determined: The ozone treatment concentration was 0.0465 g kg-1, the ozone treatment time was 30 min, and the ozone treatment times were twice a week. In this case, the control efficiency of tomato leaf mildew was 95.02%, the control effect of gray mold was 99.49%, and the fruit setting rate was 76.5%. The test parameters were accurate and reliable. CONCLUSION: The ozone sterilization method proposed in this article is safe and green, and can provide theoretical support for the recovery and reconstruction of tomato disease in a glasshouse. © 2024 Society of Chemical Industry.


Assuntos
Ozônio , Solanum lycopersicum , Ozônio/farmacologia , Doenças das Plantas/prevenção & controle , Folhas de Planta , Esterilização
10.
iScience ; 27(2): 108840, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303717

RESUMO

N-α-acetyltransferase D (NatD) mediates N-α-terminal acetylation of histone H4 (Nt-Ac-H4), but its role in breast cancer metastasis remains unknown. Here, we show that depletion of NatD directly represses the expression of FOXA2, and is accompanied by a significant reduction in Nt-Ac-H4 enrichment at the FOXA2 promoter. We show that NatD is commonly upregulated in primary breast cancer tissues, where its expression level correlates with FOXA2 expression, enhanced invasiveness, and poor clinical outcomes. Furthermore, we show that FOXA2 promotes the migration and invasion of breast cancer cells by activating MMP14 expression. MMP14 is also upregulated in breast cancer tissues, where its expression level correlates with FOXA2 expression and poor clinical prognosis. Our study shows that the NatD-FOXA2-MMP14 axis functions as a key signaling pathway to promote the migratory and invasive capabilities of breast cancer cells, suggesting that NatD is a critical epigenetic modulator of cell invasion during breast cancer progression.

11.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328112

RESUMO

Single-cell ATAC-seq sequencing data (scATAC-seq) has been widely used to investigate chromatin accessibility on the single-cell level. One important application of scATAC-seq data analysis is differential chromatin accessibility analysis. However, the data characteristics of scATAC-seq such as excessive zeros and large variability of chromatin accessibility across cells impose a unique challenge for DA analysis. Existing statistical methods focus on detecting the mean difference of the chromatin accessible regions while overlooking the distribution difference. Motivated by real data exploration that distribution difference exists among cell types, we introduce a novel composite statistical test named "scaDA", which is based on zero-inflated negative binomial model (ZINB), for performing differential distribution analysis of chromatin accessibility by jointly testing the abundance, prevalence and dispersion simultaneously. Benefiting from both dispersion shrinkage and iterative refinement of mean and prevalence parameter estimates, scaDA demonstrates its superiority to both ZINB-based likelihood ratio tests and published methods by achieving the highest power and best FDR control in a comprehensive simulation study. In addition to demonstrating the highest power in three real sc-multiome data analyses, scaDA successfully identifies differentially accessible regions in microglia from sc-multiome data for an Alzheimer's disease (AD) study, regions which are most enriched in GO terms related to neurogenesis, the clinical phenotype of AD, and SNPs identified in AD-associated GWAS.

12.
Langmuir ; 40(10): 5348-5359, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408346

RESUMO

The challenge of removing trace levels of heavy metal ions, particularly uranium, from wastewater is a critical concern in environmental management. Uranium, a key element in long-term nuclear power generation, often poses significant extraction difficulties in wastewater due to its low concentration, interference from other ions, and the complexity of aquatic ecosystems. This study introduces an anodic electrodeposited hierarchical porous 2D metal-organic framework (MOF) Cu-BDC-NH2@graphene oxide (GO) membrane for effective uranium extraction by mimicking the function of the superb-uranyl-binding protein. This membrane is characterized by its hierarchical pillared-layer structures resulting from the controlled orientation of Cu-BDC-NH2 MOFs within the laminated GO layers during the electrodeposition process. The integration of amino groups from 2D Cu-BDC-NH2 and carboxylate groups from GO enables a high affinity to uranyl ions, achieving an unprecedented uranium adsorption capacity of 1078.4 mg/g and outstanding selectivity. Our findings not only demonstrate a breakthrough in uranium extraction technology but also pave the way for advancements in water purification and sustainable energy development, proposing a practical and efficient strategy for creating orientation-tunable 2D MOFs@GO membranes tailored for high-efficiency uranium extraction.

13.
BMC Cancer ; 24(1): 138, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281032

RESUMO

BACKGROUND: Central nervous system (CNS) tumors are the most common solid tumors in children and the leading cause of cancer-related death in the latter. Currently, the incidence rate exceeds that of leukemia and ranks first in the incidence of malignant tumors in children. METHODS: The epidemiological data on childhood CNS tumors were collected from the Chinese Cancer Registry Annual Report. The annual percent change (APC) of incidence and mortality-rate changes were estimated via Joinpoint regression. Due to a lack of pertinent data, we performed a system review on the clinical-pathological characteristics in Chinese publications. RESULTS: There was no significant increase in the incidence rate (APC: -0.1, 95% CI: -1.5 to 1.3), but there was a significant increase in the mortality rate (APC: 1.8, 95% CI: 0.3 to 3.4) for childhood CNS tumors. In the subgroup analysis, there were significant increases in both the incidence and mortality rates in rural areas (APC in the incidence: 6.2, 95% CI: 2.4 to 10.2; APC in mortality: 4.4, 95% CI: 0.4 to 8.4). The most common location and type of childhood CNS were, respectively, the cerebral hemisphere (25.5%, 95% CI: 21.7% to 29.4%) and astrocytomas (26.8%, 95% CI: 23.9% to 29.6%). CONCLUSIONS: The epidemiological trends, and the relevant prediction, highlighted the need to pay continual attention to childhood CNS tumors, and the clinicopathology evinced its own distinctive characteristics. Timely detection and effective treatment must be further promoted regarding childhood CNS tumors with a view to decreasing the disease burden, especially in rural areas.


Assuntos
Neoplasias do Sistema Nervoso Central , Leucemia , Criança , Humanos , Neoplasias do Sistema Nervoso Central/epidemiologia , China/epidemiologia , Incidência , Sistema de Registros
14.
IEEE J Biomed Health Inform ; 28(3): 1704-1715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194407

RESUMO

Diabetic retinopathy (DR), a microvascular complication of diabetes, is the leading cause of vision loss among working-aged adults. However, due to the low compliance rate of DR screening and expensive medical devices for ophthalmic exams, many DR patients did not seek proper medical attention until DR develops to irreversible stages (i.e., vision loss). Fortunately, the widely available electronic health record (EHR) databases provide an unprecedented opportunity to develop cost-effective machine-learning tools for DR detection. This paper proposes a Multi-branching Temporal Convolutional Network with Tensor Data Completion (MB-TCN-TC) model to analyze the longitudinal EHRs collected from diabetic patients for DR prediction. Experimental results demonstrate that the proposed MB-TCN-TC model not only effectively copes with the imbalanced data and missing value issues commonly seen in EHR datasets but also captures the temporal correlation and complicated interactions among medical variables in the longitudinal clinical records, yielding superior prediction performance compared to existing methods. Specifically, our MB-TCN-TC model provides AUROC and AUPRC scores of 0.949 and 0.793 respectively, achieving an improvement of 6.27% on AUROC, 11.85% on AUPRC, and 19.3% on F1 score compared with the traditional TCN model.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Adulto , Humanos , Pessoa de Meia-Idade , Retinopatia Diabética/diagnóstico , Redes Neurais de Computação , Aprendizado de Máquina , Registros Eletrônicos de Saúde
15.
J Biol Chem ; 300(2): 105646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219817

RESUMO

The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A), followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing. We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.


Assuntos
Exossomos , RNA , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/genética , Exossomos/metabolismo , Proteômica , Estruturas R-Loop , RNA/metabolismo , RNA Helicases/metabolismo , RNA Nuclear/metabolismo , Linhagem Celular , Animais , Camundongos
16.
Cell Rep ; 43(1): 113662, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38184854

RESUMO

TDP-43 is an RNA/DNA-binding protein that forms aggregates in various brain disorders. TDP-43 engages in many aspects of RNA metabolism, but its molecular roles in regulating genes and transposable elements (TEs) have not been extensively explored. Chronic TDP-43 knockdown impairs cell proliferation and cellular responses to DNA damage. At the molecular level, TDP-43 chronic deficiency affects gene expression either locally or distally by concomitantly altering the crosstalk between R-loops and 5-hydroxymethylcytosine (5hmC) in gene bodies and long-range enhancer/promoter interactions. Furthermore, TDP-43 knockdown induces substantial disease-relevant TE activation by influencing their R-loop and 5hmC homeostasis in a locus-specific manner. Together, our findings highlight the genomic roles of TDP-43 in modulating R-loop-5hmC coordination in coding genes, distal regulatory elements, and TEs, presenting a general and broad molecular mechanism underlying the contributions of proteinopathies to the etiology of neurodegenerative disorders.


Assuntos
Elementos de DNA Transponíveis , Estruturas R-Loop , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA/metabolismo , Expressão Gênica
17.
Ann Med ; 56(1): 2306194, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38279689

RESUMO

BACKGROUND: Although ERAS Program had some advantages in laparoscopic distal gastrectomy (LDG), its efficacy and safety remained unclear. We conducted a systematic review and meta-analysis to assess the efficacy and safety of the ERAS group and the traditional care (TC) group in LDG. METHODS: Multiple databases were retrieved from 1 January 2000 to 30 April 2023. The risk ratio (RR), standardized mean difference (SMD) and their 95% confidence interval (CI) were used to estimate the results. RESULTS: Our meta-analysis contained 17 randomized controlled trials (RCTs) studies, which comprised 1468 patients. Regarding efficacy, the ERAS group had significantly shorter postoperative time to first flatus (SMD = -1.29 [95% CI: -1.68, -0.90]), shorter time to first defecation (SMD = -1.26 [95% CI: -1.90, -0.61]), shorter hospital stays (SMD = -0.99 [95% CI: -1.34, -0.63]), and lower hospitalization costs (SMD = -1.17 [95% CI: -1.86, -0.48]) compared to the TC group. Furthermore, in the ERAS group, C-reactive protein levels were lower on postoperative days 1, 3 or 4, and 7; albumin levels were higher on postoperative days 3 or 4 and 7; and interleukin-6 levels were lower on postoperative days 1 and 3. Regarding safety, the overall postoperative complication rate was lower in the ERAS group (RR: 0.76 [95% CI: 0.60, 0.97]), but there was no significant difference in the individual postoperative complication rate. Other indicators were also not statistically significant. CONCLUSION: The combination of ERAS Program with laparoscopy surgery was safe and effective for the perioperative management of patients with distal gastric cancer.


Assuntos
Recuperação Pós-Cirúrgica Melhorada , Laparoscopia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Tempo de Internação , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Gastrectomia/efeitos adversos , Resultado do Tratamento
18.
Acta Biomater ; 173: 325-335, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000526

RESUMO

Plasma membrane isolation is a foundational process in membrane proteomic research, cellular vesicle studies, and biomimetic nanocarrier development, yet separation processes for this outermost layer are cumbersome and susceptible to impurities and low yield. Herein, we demonstrate that cellular cytosol can be chemically polymerized for decoupling and isolation of plasma membrane within minutes. A rapid, non-disruptive in situ polymerization technique is developed with cell membrane-permeable polyethyleneglycol-diacrylate (PEG-DA) and a blue-light-sensitive photoinitiator, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP). The photopolymerization chemistry allows for precise control of intracellular polymerization and tunable confinement of cytosolic molecules. Upon cytosol solidification, plasma membrane proteins and vesicles are rapidly derived and purified as nucleic acids and intracellular proteins as small as 15 kDa are stably entrapped for removal. The polymerization chemistry and membrane derivation technique are broadly applicable to primary and fragile cell types, enabling facile membrane vesicle extraction from shorted-lived neutrophils and human primary CD8 T cells. The study demonstrates tunable intracellular polymerization via optimized live cell chemistry, offers a robust membrane isolation methodology with broad biomedical utility, and reveals insights on molecular crowding and confinement in polymerized cells. STATEMENT OF SIGNIFICANCE: Isolating the minute fraction of plasma membrane proteins and vesicles requires extended density gradient ultracentrifugation processes, which are susceptible to low yield and impurities. The present work demonstrates that the membrane isolation process can be vastly accelerated via a rapid, non-disruptive intracellular polymerization approach that decouples cellular cytosols from the plasma membrane. Following intracellular polymerization, high-yield plasma membrane proteins and vesicles can be derived from lysis buffer and sonication treatment, respectively. And the intracellular content entrapped within the polymerized hydrogel is readily removed within minutes. The technique has broad utility in membrane proteomic research, cellular vesicle studies, and biomimetic materials development, and the work offers insights on intracellular hydrogel-mediated molecular confinement.


Assuntos
Proteínas de Membrana , Proteômica , Humanos , Polimerização , Membrana Celular , Hidrogéis/química
19.
Adv Sci (Weinh) ; 11(2): e2302037, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015024

RESUMO

Mono-methylation of histone H3 on Lys 4 (H3K4me1), which is catalyzed by histone-lysine N-methyltransferase 2D (KMT2D), serves as an important epigenetic regulator in transcriptional control. In this study, the authors identify early B-cell factor 2 (EBF2) as a binding protein of H3K4me1. Combining analyses of RNA-seq and ChIP-seq data, the authors further identify killin (KLLN) as a transcriptional target of KMT2D and EBF2 in pancreatic ductal adenocarcinoma (PDAC) cells. KMT2D-dependent H3K4me1 and EBF2 are predominantly over-lapped proximal to the transcription start site (TSS) of KLLN gene. Comprehensive functional assays show that KMT2D and EBF2 cooperatively inhibit PDAC cells proliferation, migration, and invasion through upregulating KLLN. Such inhibition on PDAC progression is also achieved through increasing H3K4me1 level by GSK-LSD1, a selective inhibitor of lysine-specific demethylase 1 (LSD1). Taken together, these findings reveal a new mechanism underlying PDAC progression and provide potential therapeutic targets for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Regulação da Expressão Gênica , Histona Desmetilases/genética , Histonas/genética , Neoplasias Pancreáticas/genética
20.
Cell Prolif ; 57(2): e13551, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37743695

RESUMO

Busulfan is an antineoplastic, which is always accompanied with the abnormal of spermatogonia self-renewal and differentiation. It has been demonstrated that the omega-3 polyunsaturated fatty acids (PUFAs) benefits mature spermatozoa. However, whether omega-3 can protect endogenous spermatogonia and the detailed mechanisms are still unclear. Evaluate of spermatogenesis function (in vivo) were examined by histopathological analysis, immunofluorescence staining, and western blotting. The levels of lipid metabolites in testicular tissue were determined via liquid chromatography. We investigated the effect of lipid metabolites on Sertoli cells provided paracrine factors to regulate spermatogonia proliferation and differentiation using co-culture system. In our study, we showed that omega-3 PUFAs significantly improved the process of sperm production and elevated the quantity of both undifferentiated Lin28+ spermatogonia and differentiated c-kit+ spermatogonia in a mouse model where spermatogenic function was disrupted by busulfan. Mass spectrometry revealed an increase in the levels of several omega-3 metabolites in the testes of mice fed with omega-3 PUFAs. The eicosapentaenoic acid metabolite 12-hydroxyeicosapentaenoic acid (12-HEPE) up-regulated bone morphogenic protein 4 (BMP4) expression through GPR120-ERK1/2 pathway activation in Sertoli cells and restored spermatogonia proliferation and differentiation. Our study provides evidence that omega-3 PUFAs metabolite 12-HEPE effectively protects spermatogonia and reveals that GPR120 might be a tractable pharmacological target for fertility in men received chemotherapy or severe spermatogenesis dysfunction.


Assuntos
Bussulfano , Sêmen , Humanos , Masculino , Camundongos , Animais , Bussulfano/farmacologia , Bussulfano/metabolismo , Espermatogênese/fisiologia , Espermatogônias , Espermatozoides , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...